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The decagonal plane-wave model for 2D and 3~ quasicrystals 

R F Sabiryanov and S K Bose 
Department of Physics, Brock Univemity, St Catharines, Ontario. Canada L2S 3AI  

Received 22 March 1994, in final form 10 May 1994 

Absbict. We examine the free electron model for some rational approximants of 2D quasicrystals 
and quasi-lattices that exhibit quasiperiodicity in ( x .  y) planes and periodicity along the z- 
direction. Our study is based on a scattering potential with ten symmetrically oriented plane-wave 
components in the ( k x ,  k,) plane for the ZD case. and two additional plane-wave components 
in directions perpendicular to the plane for the 30 case. We calculate the band structure and 
the density of states for the rational approximants and examine the formation of a gap or a 
pseudogap in such systems. The relevance of this study to the stability and electrical conduction 
propeny of decagonal quasictystals is discussed. 

1. Introduction 

The present study 'was inspired by recent articles of Carlsson [1,2], which examined 
the electronic density of states (DOS) for a model one-electron potential with twelve 
symmetrically oriented plane-wave components. Calculations based on this icosahedral 
plane-wave model reveal topological band structure differences that allow an icosahedral 
quasicrystal to have a gap in the DOS, while an analogous simple monoatomic BCC structure 
cannot. The issue of pseudogap formation in nearly free electron materials with icosahedral 
symmetry had previously been explored [3-51 via a two-plane-wave analysis based on the 
(pseudo-) Jones zone approach. The (pseudo-) Jones zone is the region in reciprocal space 
bounded by the perpendicular bisectors of the vectors joining the origin to the dominant 
scattering vectors, as obtained, for example, from diffraction experiments. It is believed 
that in these materia,ls the Fermi wave vector lies on the (pseud-) Jones zone boundary, 
and the origin of the pseudogap is a Hume-Rothery-like Fermi surface-(pseudo-)Jones zone 
boundary (FS-JZB) interaction. The pseudogap at the Fermi level lowers the electronic 
energy and is deemed to be an important factor in stabilizing the icosahedral phase. This is 
reminiscent of the Nagel-Tauc 161 criterion for the stability of metallic glasses. Elaborate 
and reliable electronic structure calculations for both icosahedral quasicrystals and their 
crystalline approxim;mts [7,8] reveal the existence of a pseudogap in the Dos at the Fermi 
level. The existence of pseudogap is also supported by conductivity, specific heat, and 
photoemission experiments [9] on icosahedral quasicrystals. In systems like AIMnSi, 
both the icosahedral quasicrystal phase (i-AlMnSi) and its close crystalline approximant 
(or-AIMnSi) [IO] show evidence of a pseudogap. This is inferred from specific heat, 
semimetallic conductivity and other similar anomalous transport properties exhibited by 
both phases [9]. 

The icosahedral plane-wave analysis presented in I1.21 has prompted us to carry out 
a similar study for systems which exhibit quasiperiodicity in (x, y) planes and periodicity 
along the z-direction. Decagonal quasicrystals, which exist in thermodynamically stable 
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phases [ I I ,  121, belong to this category. Measurements of the optical conductivities 
of decagonal quasicrystals [ 131 and an analysis based on a comparison with similar 
measurements on icosahedral systems indicate the possibility of significant differences in 
the electronic structure of these two classes of quasicrystals. The present study is intended 
to shed some light on this issue. We have canied out our investigation in two steps. First we 
examine the 2D quasiperiodic case via a model one-electron potential with l e n  plane-wave 
components with the wave vectors symmetrically arranged in a plane. This is a 2D analogue 
of the 30 icosahedral case studied by Carlsson [1,2], and can be called the decagonal plane- 
wave model. We study the band structure and the DOS for various rational approximants and 
study the limiting behaviour for increasing order of the Fibonacci approximation ( p / q )  to the 
golden mean, r .  Next we consider the 3D case by adding two more plane-wave components 
to the potential in directions perpendicular to the plane, the direction of periodicity. The 
results for the band structure and the DOS for these 2D and the 3D cases are presented in 
section 2 of this paper. In section 3 we present a (pseudo-) Jones zone analysis of the gap 
formation and the states near the gap. In section 4 we discuss the relevance of our study to 
the properties of decagonal quasicrystals. In section 5 we summarize our results and present 
out conclusions. Our calculations are strictly for some low-order rational approximants of 
the ZD and 3D (decagonal) quasicrystals. The comments made for the exact quasicrystalline 
phases are based on observation of certain tendencies in these approximants. 
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2. Electronic structure for the decagonal plane-wave model 

For the 2D quasicrystal the one-electron potential proposed by Carlsson [ I ,  21 can be written 
as 

where Qj are five symmetrically oriented vectors in the plane (figure l) ,  each having the 
same magnitude Qo. Vo. chosen to be a positive constant, determines the strength of the 
scattering potential and the magnitude of the gap. Equation (1) represents a simplified form 
of the potential seen by the electron in an actual ZD quasicrystal, since the structure factor has 
peaks at many wave vectors (of different magnitudes)-in fact, an infinite number of them. 
Equation (1) can be extended to include other wave vectors, bearing quasipenodic ratios to 
Qo. We suppose that the vectors chosen in (1) are the strongest scattering vectors, i.e., with 
the largest magnitude of VO. The effect of this simplification is expected to be weak as far as 
DOS properties are concerned. Localization properties of the wavefunctions, not addressed 
to in the present paper may, however, depend crucially on how many wave vectors are 
retained in the Fourier representation of V ( r ) .  The magnitude QO of the scattering vectors 
determines the location, E,, of the gap in the DOS via E ,  = (h2/2m)(Qo/2)'. For the ZD 
quasicrystal the vectors Qj can be written as 
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for the x -  and y-axes as shown in figure 1. Q1 can be determined from CQi = 0. To 
study the rational approximants of the 2D quasicrystal, we replace the golden mean, 5 ,  by 
its Fibonacci approximant, p / g .  with the corresponding vectors Qi given by 

where Qb = Q0/(p4 + p’q’ + q4)’/*. We calculate the band sbllcture and the DOS for a 
series of rational approximants to the 2D quasicrystal. A natural way to choose the periodic 
approximant is to consider a rectangular unit cell with basis vectors a and b as shown in 
figure 1. This is the smallest unit cell that allows interaction between the states at various 
reciprocal lattice vectors via all the vectors Qi, thus using the full symmetry of the potential 
V ( r ) .  This choice gives in the limit p, q + W. p / q  -+ 5 ,  a / b  = (1 + 52)1/2 /2  (figure 1). 
Thus for the p / q  approximant we take 

The unit cell for the 111 approximant, with the symmetry points, is shown with solid lines 
in figure 2. The significance of the dashed lines is to show the connection with a distorted 
hexagonal symmetry to be discussed at a later stage. 

S’ 

Figure 1. Scattering vectors ( Q j ,  i = I , ,  , . 5 )  (qua- 
tions (1) and (2)) and ihe corresponding pentagonal 
(pseudo-) Jones zone. The (pseudo-) Jones zone with 
all the ten vectors in equation ( I )  is decagonal. The 
unir cell (a. b) used in the calculation is indicated with 
dolled lines. 

Figure 2. Unit cell for the 1/1 approximant with the 
symmetry points indicated by r, S, X and Y. The 
dashed lines indicate a distorted hexagonal symmetry 
(see discussion in the text). 
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For the 3D case, i.e. 3D lattices quasiperiodic in a plane and periodic in the perpendicular 
direction, we modify the decagonal plane-wave model given by ( I )  by adding two plane 
waves, one in each direction perpendicular to the quasiperiodic plane. The purpose is to 
be able to comment, based on some rational approximant calculations, on the properties of 
decagonal quasicrystals. The magnitude of these vectors is taken to be Qo. The unit cell 
used in the 3D calculation is, thus, constituted by the vectors a, b, and c, where c is a 
vector of magnitude Qo in the z-direction. This choice is consistent with the structure of 
the decagonal phase of the AI-Mn quasicrystal discussed by Daulton er al [ I  I]. It is also 
based on the observation [I41 that the decagonal quasicrystal possesses a screw’ axis, very 
much like the HCP structure, resulting in effective obliteration of the odd Bragg planes at 
(2n + I)a/c (c = separation between the planes) in the z-direction. Steurer and co-workers 
have determined and discussed the structures of decagonal quasicrystals Al-Cu-Co [IS], 
AI-Mn [16], and AI-Ni-Co [17]. Burkov [I81 has presented a structural model for the 
decagonal Al-Cu-CO, which is a reformulation and extension of Steurer’s model [IS]. In 
this model of decagonal Al-Cu-Co the obliteration of the odd Bragg planes in the z-direction 
has the effect of putting the effective first Brillouin zone boundary (i.e. JZB) at the same 
distance from the r point in the z-direction as in the quasiperiodic plane. Our choice of 
the magnitude of c (= Qo) is in consistence with this result. However, as we will see the 
choice of the magnitude of the vectors in the z-direction in  the Fourier components of V ( T )  
is not crucial to the basic important features of our results. 

The results for the band structure for the ZD case for 1/1, U1 and 3/2 rational 
approximants are shown in figure 3 (top to bottom). The corresponding Doss are shown in 
figure 4, presented as the ratio of the DOS to the free-electron DOS for the empty lattice. Even 
for the 111 approximant a gap appears in the DOS for Vo - 0.1s Ryd (h2/2m set to unity). 
This is not surprising, since each point on the first Brillouin zone boundary has only one 
equivalent point, eliminating the possibility of degeneracy. The results shown in figures 3 
and 4 are obtained using VO = 0.2 Ryd and a kinetic energy cut-off at 2.57 Ryd. The cut-off 
was gradually reduced starting from a high value (- 16 Ryd) so the calculation could be 
carried out with a relatively small number of plane waves (reciprocal lattice vectors). The 
stability of the results with respect to this cut-off was insured. The 2D I / I  approximant 
considered by us is almost like a planar cut of the 3/2 approximant in the icosahedral plane- 
wave model considered by Carlsson [1,2]. The size of the unit cell in real space grows 
faster (as p 2 )  in our case than in the icosahedral plane-wave model of Carlsson [ 1,2] (as p ) .  
Thus the size of the Brillouin zone and the length of the reciprocal lattice vectors decrease 
rapidly with the increasing order of the approximant, requiring a fast increasing number 
of reciprocal lattice vectors to cover the same energy range. The SI3 approximant would 
have needed more than 2000 plane waves in our calculation, forcing us to stop at the 312 
level. However, it seems that higher-order approximants will not yield any new information 
except the saturation value of the gap width. The difference between the gap widths For the 
U1 and 3/2 rational approximants is very small (-3%), i.e., the gap width is close to its 
saturation value (V,) already at the 3/2 level. 

The band structure for the 3D case is shown in figure 5 for the U1 approximant. The 
bands in the (kx ,  k,) (quasiperiodic) plane are very similar to the 2D case. An examination 
of the band structure for the three approximants (not shown here) reveals that the bands in 
the (k,, k,) plane become flatter with increasing order of the approximant. The bands in 
the periodic kz direction are the usual parabolic free-electron-like bands. These parabolic 
bands modify the DOS, changing the gap in the ?D case into a quasi-gap, i.e., just a minimum 
in the DOS. The DOSS obtained for the 111, U1, and 3/2 approximants are shown in figure 6, 
presented as the ratio of DOS and that at the pseudogap region, E, = 0.6 Ryd. It is clear 
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Figure 3. (top to bottom) Band structures for the I l l ,  21, and 3/2 npproximants. respectively, 
for Lhe 2~ case. 

that the periodicity in the z-direction removes the gap in the DOS, and changes it, at best, 
to a minimum in the DOS. The depth of this quasi-gap is dependent on the curvature of the 
parabolic bands in the kz direction, i.e., to the choice of the vector c for the unit cell. As 
stated earlier our choice is guided naturally by the Steurer [IS] and Burkov models [18] of 
the decagonal AI-Cu-Co quasicrystal. Note that the DOSS in figure 6 show wiggles due to 
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Bigure 4. DOS for the 1/1, VI. and 312 approximants in 2D. presented as the ratio of the DO$ 

and the free electron DOS for the empty lattice. 

a finite number of R-points used in the calculation. A smoother DOS could be obtained hv 
~~ ~~ 

using more R-points or by using an energy-dependent matrix element as done by Carlsson 
[1,21 (see equation (3) of [21). 

3. Gap formation and states near the gap edges 

The following discussion is very similar to the (pseudo-) Jones zone analysis presented by 
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Figure 5. Band structure for the 2 1  approximant for the 30 case. 

Carlsson [1,2] in connection with gap formation in icosahedral quasicrystals. We examine 
the energy eigenvalues at the boundary of the (pseudo-) Jones zone (in the crystalline case, 
first Brillouin zone) for the 2D case. To start with, let us consider the first Brillouin zone 
of a hexagonal lattice, shown in figure 7(a). The corner points belong to two classes of 
equivalent points, HI and U>. Equivalent points belonging to the same class are shown 
joined by dotted lines. Because of the threefold degeneracy we need a three-wave analysis 
at the corner points. This analysis gives a non-degenerate energy level, E t  + 2Vo, and a 
doubly degenerate energy level, E: - VO. where E: is the energy of the unperturbed plane 
wave at the corner point. For Vo > 0 the lower level is thus twofold degenerate even in 
the presence of the perturbing crystalline potential. The edge-centre points L have only 
one equivalent point, and a two-wave analysis yields eigenvalues E; & Vo. In figure 8(a) 
we sketch the bands along the symmetry direction HL, showing that there cannot be any 
gap in the DOS. In figure 7(b) we show the first Brillouin zone of a square lattice. The 
four corner points H are equivalent and a four-plane-wave analysis yields a non-degenerate 
eigenvalue E: - 3V0, and a triply degenerate eigenvalue E t +  Vo. At the edge-centre point 
N a two-plane-wave analysis is valid and yields eigenvalues E t  f V,. The corresponding 
bands, sketched in figure 8(b), show that there is a gap in the DOS of magnitude 2Vo. As 
shown in the previous section, the fivefold-symmetric (pseudo-) Jones zone (figure l), with 
no equivalent points on the zone boundary, admits of an energy gap. The width of the gap 
is lowest for the 1/1 approximant, with a rectangular Brillouin zone (twofold symmetry) 
and increases as the order of the approximant increases. For the twofold symmetry the gap, 
Vi  (dependent on the ratio a/b),  is less than 2V0, while for tenfold (fivefold) symmetry the 
gap is greater than Vd, but less than 2Vo. Note that in the case of the 111 approximant the 
rectangular unit cell in the reciprocal space (figure 2) can be seen as a distorted square, 
but the unit cell can also be chosen as the parallelogram with vertices at S', r and S. 
This unit cell can be seen as a distorted version of a similar unit cell for the hexagonal 
lattice (Hz~HzHI  in figure 7(a)). Thus the 1/1 approximant has a gap of width intermediate 
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-0.2 0.1 0.4 0.7 1.0 1.3 
E (RY) 

Fiyrc  6. Dos lor the 111. UI. and 312 appmximants for the 3 0  case, presented as the ratio of 
the DOS and the DOS 31 0.6 Ryd. 

between 2Vo (square lattice) and 0 (hexagonal lattice). 
For the decagonal (pentagonal) symmetry, there are two mechanisms that determine the 

changes near the gap edges with the increasing order of the approximant. The dominant 
effect is due to a change in the ratio ajb ,  which causes a change in the location of the band 
edges. This change is stronger in the beginning, i.e., for lower-order approximants. With 
increasing order ( p j q )  the a j b  ratio, ( p Z + q 2 ) 1 / 2 / 2 q ,  oscillates about the limit (1 +sa) ' / * /2  
with gradually diminishing amplitude. The change in the a j b  ratio with the order also affects 
the shape of the DOS near the gap edges via a change in the reciprocal lattice vectors that 
contribute to states near the gap edges. The change in the gap width is thus a combination 
of a weak change in the shape of DDS near the gap edges overlapping a dominant change 
due to the movement of the gap edges. This is clear from an inspection of the DOSS shown 
in figure 4. 

It is possible to understand the gap edge states via a simplified analysis. To illustrate 
this we consider the 3/2 approximant. It is clear from the band structure i n  figure 3(c) that 
the bands near the r point play the dominant role in determining the DOS at the bottom 
gap edge. The reciprocal lattice vectors, K,, contributing to the eigenstates in this region 
satisfy the relation K, = Qoj2. In terms of basis vectors a and b, the vectors Q j  are given 
by 
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€1 H N 
Figure 7. Brillouin zones for (a) hexagoanal. (b) square 
laltice. The equivalent paints are pined by dotted lines. 

Figure S. Schematic of the band srmctwe in the 
symmetry dmctiom (a) HL (hexagonal symmetry), 
and (b) HN (fourfold symmetry), carresponding to 
the Brillouin zones shown in figures 7(a) and 7(b), 
respecrively. 

QZ = A a +  Bb Q3 = C a  + Db 

with A = Zpq, B = p z ,  C = 2p2,  D = -q2 . Q 4 and QS can be obtained from Q1 
and Qz via the symmetry relation shown in figure 1 (and equation (2)). Q, = 0 yields 
QI = 2(-B + D)b .  For the 3/2 approximant there are a large number of reciprocal lattice 
vectors satisfying approximately the wnditiort K, 7 Q0/2 (for example, the vectors (3 ,6 )  
(Le., K, = 3a + 6b); (9 ,2 ) ;  (1 ,7 ) ;  (70);  (5.4); (3 ,5 ) ;  (2 ,6);  (6,3);.(6,4) etc). All these 
vectors lying in a shell around a circle of radius Q0/2 have slightly different unperfurbed 
energies. As p / q  approaches r.  this shell becomes thinner and thinner. This is because 
for the vector Qi/Z, p 2 / 2  and q 2 / 2  should be chosen as the closest intesers for odd p ,  
q, and in the infinite limit the difference between these integers will vanish. Consider for 
the 312 approximant two unperturbed states (2 ,6 )  and (6 ,3) ,  coupled via the Q, ( 8 a  + 9b) 
component of the potential V ( r ) .  The unperturbed state (6 ,3)  is coupled also to ( 6 , l )  via 
QZ (12a t 46). There is no direct coupling between the states (2 ,6 )  and (6,  I ) ,  but an 
indirect coupling mediated by (6 ,3 ) .  However, we can create states 
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both of which are uncoupled from the state (6, I), while the matrix element of the one- 
electron Hamiltonian between them is VO. Thus the eigenvalues in the presence of the 
potential V(r) can be obtained from the matrix 
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The eigenvalues in the presence of the potential V ( r )  are thus further apart than the 
unperturbed energies. Similar analysis can be carried out for other sets of states such 
as I(3.6); (9,2); (1,7)] or [(7,0); (5.4); (3,5)). All these unperturbed states with slightly 
different energies are spread further apart via the potential V ( r ) ,  giving rise to some structure 
in the DOS near the gap edges. In the infinite limit, when pjq has reached 5 .  the unperturbed 
energies merge, reducing somewhat the fine structure in the DOS near the gap edge. 

Various features in the DOS are related to the shape and the arrangement of the bands, 
i.e., their deviation from the parabolic bands as a result of the interaction V ( r ) .  In the 
absence of this interaction the DOS in the ?D case would have been a constant. In [ I ] ,  the 
possibility of band-tailing in the gap region was suggested for Ihe 3D icosahedral plane-wave 
model. With this in mind we look at the shape of the DOS at the gap edges for the 2D case, 
shown in figure 9. First of all we notice that Vo must be strong enough to create a gap. Such 
strong potentials can cause significant deviation from the parabolic shape of the unperturbed 
bands, and we do see linear bands near various symmetry points. The linear bands give rise 
to linear DOS, whereas parabolic bands give constant DOS in 2D. The connection between 
the band shape and the shape of the DOS in the gap region can be seen by comparing the 
band structure of figure 3(top to bottom) with the DOS in figure 9. For the 1/1 approximant 
X and Y points (very close in energy) define the bottom of the gap. The linear bands in this 
region give rise to a linear DOS. The band at the r point, starting at a slightly lower energy, 
is parabolic and shifts the DOS by a constant. The top edge of the gap gets a contribution 
from the parabolic bands at the r point, with a constant DOS in this region. For the 2/1 
approximant the top and bottom parts of the gap region get contribution from the linear 
bands near S and Y points, respectively, and the corresponding DOSS are linear. For the 
3/2 approximant the bands at the top and bottom of the gap are a mixture of linear and 
parabolic parts. The corresponding DOS consists of linear parts, joined by constant shifts. 
The structure in the Dos near the bottom edge of the gap is due to a few bands that are 
separate from the rest of the bands at lower energy. Although all the preceding observations 
are trivial, the point here is that the shape of the DOS is easy to explain on the basis of 
the shape of the bands in our calculation and there is no indication of band-tailing. In 
3D. linear bands give rise to parabolic DOS (- E*) and parabolic bands give square-root 
DOS (- El lz ) .  Since we have not performed the icosahedral model calculation, we cannot 
comment on whether the band-tailing suggested in [ I ]  is due to linear bands giving E*-like 
DOS. 

Our analysis shows that if a free-electron-like ?D solid is to be stabilized via a Hume- 
Rothery-like mechanism, where the Fermi surface lies at the first Brillouin zone (or pseudo- 
Jones zone) boundary. then a square lattice is favoured over a hexagonal lattice as well 
as some lower-order approximants of ZD quasicrystals. From the observed closeness 
(or near saturation) in the gap width between the U1 and 3/2 approximants, we infer 
that the square lattice can be stable for a large enough VO, but it may be difficult to 
realize such a structure experimentally because of competition from the crystalline Structure 
(square lattice). Note that the issue of (non-existence of long-range positional order in 
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Figure 9. DOSS for the ZD approximants in the gap region. 

ZD, which is still an active area or research [19], is not the concern of this paper. We 
have compared electronic structures for 2D free-electron-like systems with potentials having 
certain symmetries, without any regard to how these symmetries might actually arise. A 
tight-binding analysis by Sire [20] shows that for a weak potential the crystalline phase is 
more stable than the quasicrystalline one in 20, while the opposite situation is obtained by 
increasing the potential. Our results agrees with this result for weak potentials, while the 
tight-binding description of Sire [ZO] may well be more appropriate for systems that show 
significant deviation from free electron behaviour, i.e., systems with d electrons. 

4. Application to the study of decagonal quasicrystals 

The decagonal quasicrystals form a class of anisotropic materials with periodicity along 
their c-axis and quasiperiodic structure with tenfold symmetry in the plane perpendicular 
to the c-axis. Al-Cu-CO and AI-Ni-Co systems are examples of thermodynamically stable 
decagonal quasicrystals, while AI-Mn, AI-Fe and AI-Pd systems exist only in metastable 
decagonal phase [9]. Measurements of transport properties in single-grained decagonal 
quasicrystals show marked anisotropy [9, 131. Electrical resistivity along the quasiperiodic 
plane can be 5-20 times higher than along the c-axis. There are reasons to believe that 
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the electrical conduction propetty of these systems is dominated by free-electron-like s-p 
states at the Fermi level. Self-consistent electronic structure calculations based on the LMTO 
(linear muffin-tin orbitals) [21] method for the Burkov model 1181 of the decagonal AI-Cu- 
CO quasicrystal, for various choices of the locations as well as concentrations of the transition 
metal atoms, Cu and CO, show [22] that s, p states and the d states have roughly equal weight 
at the Fermi level. The d-orbital-projected DOS at the Fermi level is approximately 50% 
of the total DOS. Since the mobility of the s, p states is, in general, several times higher 
than that of the d states (231, it is clear that the process of electrical conduction should 
be dictated by the free-electron-like s-p states at the Fermi level. The band structure in 
figure 5 shows that the Rat bands in the quasiperiodic plane (suggesting high effective mass 
for the carriers in these states) can be responsible for the high in-plane electrical resistivity, 
while the parabolic free-electron-like bands in the periodic direction suggest low resistivity 
perpendicular to the plane. It seems that the band mechanism is adequate to explain the 
anisotropy in the electrical conduction, and no assumption regarding the criticality or the 
localization of the states at the Fermi level 12a-261 is needed. This conclusion is in line with 
the assumption made by Burkov et a1 [27] in a theoretical study of the optical conductivity 
of icosahedral quasicrystals, i.e., the assumption that the conduction process is amenable to 
a k-space description. This assumption also underlies the study of the transport properties 
of icosahedral quasicrystals by Fujiwara [Bf. It is valid for both icosahedral and decagonal 
quasicrystals. 

Basov er al [I31 have recently carried out measurements of optical and far-infrared 
conductivity of high-quality decagonal quasicrystals A1&01+3~18 and AI&o&u15SiZ. 
and presented an analysis of their results based on a comparison with similar measurements 
on icosahedral quasicrystals. They find no evidence for a well-developed pseudogap at the 
Fermi level. Although neither this work nor that of Basov er al [13] provides a definitive 
clue to the (non-) existence of pseudogap in decagonal quasicrystals, our free electron 
model strongly suggests that the periodicity along the c-axis should suppress the gap to 
a large extent. Thus, the pseudogap in the decagonal phase, if at all present, should be 
much weaker than in the icosahedral phase. Note that this observation applies only to the 
free-electron-like states, while real quasicrystals, icosahedral and decagonal, have a large 
number of d electrons per atom. Rigorous calculations [22,29] for the Burkov model [ 181 
of the decagonal quasicrystals show that these d electrons play a crucial role in the stability 
of the quasicrystalline phase, even though their contribution to the conduction properties 
may not be dominant. 
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5. Summary and conclusions 

Calculations based on the decagonal plane-wave model suggests that in ?D a quasicrystal 
with fivefold (tenfold) symmetry should exhibit an energy gap. This conclusion is based on 
our calculations of 111, 2/1, and 3/2 approximants. The width of the gap should be lower 
than that in case of fourfold symmetry (square lattice), but higher than that for twofold 
symmetry (rectangular lattice). 3D quasicrystals that exhibit decagonal symmetry in a plane 
but are periodic in the perpendicular direction should have no energy gap, but only a 
minimum in the DOS, because of the parabolic free-electron-like bands in the I C ,  direction. 
Thus the periodicity in the z-direction is detrimental to the formation of energy gap. For 
such quasicrystals that bands in the quasiperiodic (kx, k,) plane are much flatter than in 
the periodic k: direction. Thus those decagonal 3D quasiclystals, where the electronic 
transport is dominated by free-electron-like states, should exhibit much larger resistivity 
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in the quasiperiodic plane than in the periodic direction. Finally. since the icosahedral 
plane-wave model [1,2] for 3D quasicrystals exhibits an energy gap, while the decagonal 
plane-wave model does not. it is quite likely that in real 3 0  decagonal quasicrystals, such 
as Al-Cu-Co or AI-Ni-Co, the pseudogap at the Fermi level. if at all present, is much less 
pronounced than in similar (i.e.. having roughly the same number of free and d electrons per 
atom) icosahedral quasicrystals. This, however, should not be interpreted as the decagonal 
quasicrystals being less stable, as a proper description of stability must address the role 
of the d electrons present in both icosahedral and decagonal quasicrystals. All the above 
conclusions are based on calculations for rational approximants. 
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